

Grade Awarded	Mark Required (/100)	% candidates achieving grade
A	70+	28.6%
В	58+	24.4%
С	46+	24.3%
D	40+	8.8%
No award	<40	13.9%

Section:	Multiple Choice		Extended Answer	
Average Mark:	24.6	/40	34.1	/60

	2008 Higher Chemistry Marking Scheme				
MC Qu	Answer	% Pupils Correct	Reasoning		
1	D	58	■ A displacement: requires a metal and a metal ion to swap places ■ B neutralisation: not H ⁺ ions present for a neutralisation to take place ■ C oxidation: no loss of electrons for an oxidation reaction ■ D precipitation: $BaCl_2(aq) + 2AgNO_3(aq) \rightarrow Ba(NO_3)_2(aq) + 2AgCl(s)$		
2	В	53	EA Hydrogen gas given off at zinc electrode: $Zn + 2HCl \rightarrow ZnCl_2 + H_2$ B Hydrogen gas given off at zinc electrode: $Zn + 2HCl \rightarrow ZnCl_2 + H_2$ C No gas given off at copper electrode as copper not reactive enough to react D No gas given off at copper electrode as copper not reactive enough to react		
3	A	53	図A carbon dioxide dissolves in water to form an acid (pH<7) 図B hydrogen oxide (water) has a neutral pH=7 図C sodium oxide dissolves in water to form an alkali (pH>7) 図D tin oxide is insoluble in water (p7 of data booklet)		
4	D	57	0.6mol Cl ⁻ ions \therefore 0.6mol NaCl f.u.0.2mol SO42- ions \therefore 0.2mol Na2SO4 f.u. \therefore 0.6mol Na ⁺ ions \therefore 0.4mol Na ⁺ ions \therefore 0.4mol Na ⁺ ions \therefore 0.6mol Na ⁺ ions + 0.4mol Na ⁺ ions = 1mol Na ⁺ ions		
5	A	87	Rate = $\frac{\Delta quantity}{\Delta time}$ = $\frac{82-52}{8-2}$ = $\frac{30}{6}$ = 5cm ³ min ⁻¹		
			gfm Cu = 63.5g n o. of mol $\frac{mass}{gfm} = \frac{5}{63.5} = 0.0787mol$		
6	D	58	$\begin{array}{c} Cu + 2AgNO_3 \rightarrow 2Ag + Cu(NO_3)_2\\ 1mol & 2mol\\ 0.0787mol & 0.157mol \end{array}$		
7	D	61	gfm Ag 107.9gmass = no. of mol × gfm = 0.157mol × 107.9g mol ⁻¹ = 16.99gImage: A activated complex only forms if energy and angle of collision are both correctImage: B all molecules in area X have enough energy to form activated complexImage: C activated complex only forms if energy and angle of collision are both correctImage: D all molecules have enough energy to react (angle of collision must also be right)		
8	C	70	The activation energy for the catalysed forward reaction = 35kJ mol ⁻¹ The enthalpy change for the reaction = -30kJ mol ⁻¹ The activation energy for the catalysed reverse reaction = 35 + 30 = 65kJ mol ⁻¹		
9	A	78	Group 1 Element Lithium Sodium Potassium Rubidium Caesium Trend Atomic Number 3 11 19 37 55 1°1 100 376 decreasing 1°t Ionisation Energy (kJ mol ⁻¹) 520 496 419 403 376 decreasing Atomic Size (pm) (or Covalent Radius) 134 154 196 216 235 increasing Density (g cm ⁻³) 0.53 0.97 0.89 1.53 1.93 increasing Melting Point (°C) 181 98 63 39 28 decreasing		
10	D	66	Electronegativity is the attraction for electrons of an atom Element Carbon Nitrogen Phosphorus Silicon Electronegativity 2.5 3.0 2.2 1.9		
11	С	83	EA Any ionisation energy removes 1 mol of electrons EB Any ionisation energy removes 1 mol of electrons $\square C 3^{rd}$ ionisation removes 1 electron from 2+ ion into 3+ ion: $Al^{2+}(g) \rightarrow Al^{3+}(g) + e^{-1}$ ED 3^{rd} ionisation removes 1 electron from 2+ ion into 3+ ion: $Al^{2+}(g) \rightarrow Al^{3+}(g) + e^{-1}$		
12	D	36	 Industrial removes relection from 22 for fine Strong (g) → Ar (g) + e A Breaking covalent bond in Cl-Cl requires energy put in ∴ endothermic reaction B Melting and boiling absorbs energy ∴ endothermic process C Removing electrons from atoms requires energy put in ∴ endothermic reaction D Turning gases back into solids gives out energy ∴ exothermic reaction 		

13	A	65	 ☑A ethanol C₂H₅OH contain the O-H bond and has hydrogen bonding ☑B ethyl ethanoate: ester have no O-H, N-H or H-F bonds ∴ no hydrogen bonding ☑C hexane: alkanes have no O-H, N-H or H-F bonds ∴ no hydrogen bonding ☑D pent-1-ene: alkenes have no O-H, N-H or H-F bonds ∴ no hydrogen bonding 	
14	С	74	 ☑ A H-Cl is a polar molecule (electronegativity difference = 3.0-2.2 = 0.8) ☑ B H₂O is a polar molecule (electronegativity difference = 3.5-2.2 = 1.3) ☑ C CO₂ is a non-polar molecule due to linear shape (O=C=O) ☑ D CHCl₃ is a polar molecule (C-Cl electronegativity difference = 3.0-2.5 = 0.5) 	
15	В	41	 A graphite: covalent bonds between carbon with one delocalised electron per atom B sodium: metallic bonding with positively charged ions and delocalised outer electrons C mercury is a liquid at room temperature (melting point = -39°C) D phosphorus contains P4 molecules with no delocalised electrons 	
16	С	46	1mol Na = 6.02×10 ²³ atoms = 23g 1 atom = 23g × 1 6.02×10 ²³ = 3.8×10 ⁻²³ g	
17	D	69	\blacksquare A 1mol O_2 = 2mol O atoms1mol CO = 1mol O atoms \blacksquare B 1mol O_2 = 2mol O atoms0.5mol CO_2 = 1mol O atoms \blacksquare C 0.5mol O_2 = 1mol O atoms1mol CO_2 = 2mol O atoms \blacksquare D 1mol O_2 = 2mol O atoms1mol CO_2 = 2 mol O atoms	
18	В	39	Imployed a construction of the construction of th	
			$\begin{array}{c} 2NO_{(g)} + O_{2(g)} \rightarrow 2NO_{2(g)} \\ 2mol & 1mol & 2mol \\ 2vol & 1vol & 2vol \\ 4litres & 2litres & 4litres \end{array}$	
19	С	54	2mol1mol2mol2vol1vol2vol	
19 20	C B	54 66	2mol1mol2mol2vol1vol2vol4litres2litres4litres	
	C B D		2mol1mol2mol2vol1vol2vol4litres2litres4litres(+1litre of NO2 leftover)Methane (biogas) is produced in anaerobic conditions (no oxygen available) when	
20	C B D	66	2mol1mol2mol2vol1vol2vol4litres2litres4litres(+1litre of NO2 leftover)4litresMethane (biogas) is produced in anaerobic conditions (no oxygen available) when bacteria are forced to break down materials into methane instead of carbon dioxide $H-C=C-C=C-H$ Formula of butadiene = C_4H_6 $n=4 \therefore 2n-2 = (2x4)-2 = 8-2 = 6$	

	-		\blacksquare A methanol is made by reacting synthesis gas: CO + 2H ₂ \rightarrow CH ₃ OH \blacksquare Alkenes must have 2 carbons for a C=C double bond i.e. methene does not exist
24	В	56	Sc methanol is oxidised to methanal which is further oxidised to methanoic acid
	_		ED acidified potassium dichromate will oxidise methanol to methanal
			☑A This is the diacid monomer used for the polyester formed
25 4 5		54	B Carboxylic Acid groups must be on carbons 1 + 3 to form polyester as shown
25	A	56	🗷 C Molecule drawn is a diol not a diacid
			ED There is no -CH2CH2- group between benzene and -COOH carboxyl group
			🗷 A Single esters are used for flavourings, perfumes and solvents
26	B	42	B Polymeric esters are long chain polymer polyesters used in fibres and resins
20	U	TL	C Polyester resins contain cross-links but polyester fibres are straight molecules
			ED Protein is the polymer made by condensation polymerisation of amino acids
27	C	88	Enzymes are denatured by temperatures above the optimum temperature (usually body temperature 37°C) as they change shape and no longer catalyse their chemical reaction.
	0	00	Temperature 37°C) as they change shape and no longer catalyse their chemical reaction.
	-		Peptide and amide links are the same group chemically OH
28	В	82	Peptide links are found in proteins
			 Amide links are found in polyamide polymers e.g. nylon, kevlar C - N -
			A catalyst lowers the activation energy of both the forward and reverse reactions. This
29	В	85	increases the rates of the forward and reverse reactions. The catalyst allows equilibrium to
27	D	05	be established more quickly. The final concentrations of reactants and products remains the
			same as the position of equilibrium remains unchanged. The red colour will fade as equilibrium shifts to right.
			E A Equilibrium shifts to left as product (H ⁺) is added to equilibrium
30	C	29	B Equilibrium shifts to left as product (Br) is added to equilibrium
	C	27	☑C Equilibrium shifts to right as product (Br ⁻) is removed by Ag ⁺ Br ⁻ (s) precipitation
			■D Equilibrium shifts to left as product (OBr ⁻) is added to equilibrium
			🗵 A nitric acid is a strong acid
31	B	71	☑B 0.1mol l ⁻¹ solution is a dilute solution and nitric acid is strong acid
		/ 1	区 0.1mol l ⁻¹ solution is a dilute solution 区D 0.1mol l ⁻¹ solution is a dilute solution
			EXA polar molecules are covalent molecules so do not conduct electricity
	2		\square B little dissociation of H ₂ O \rightarrow H [*] + OH [*] : few ions means small conductivity
32	В	53	SC hydrogen bonding is between non-conducting molecules
			⊠D the low conductivity of water is not dependent on equal numbers of H ⁺ and OH ⁻
			🗷 A ammonia solution is a weak alkali and has pH>7
33	C	72	B ammonia solution is a weak alkali and only partially ionised (dissociated)
		16	☑C ammonia solution is an alkali so it contains more OH ⁻ ions than H ⁺ ions ☑D To provide contains a solution formed ammonium solution.
			In neutralisation reactions with acids, ammonia solution forms ammonium salts Rate of Reaction Volume of Alkali
24	٨	70	Acid Type pH Conductivity With Magnesium neutralised
34	A	78	Hydrochloric acid Strong lower (e.g. pH=0) High Fast
			Ethanoic acid Weak higher (e.g. pH=4) Low Slow
	-		 ☑ A HCl has one H⁺ in formula. NaOH has one OH⁻ in formula ∴ final pH=7 ☑ B HCl has one H⁺ in formula. Ca(OH)₂ has two OH⁻ in formula ∴ final pH>7
35	С	23	$\square B \ A \ A \ A \ A \ A \ A \ A \ A \ A \$
	-		\mathbb{Z} D H ₂ SO ₄ has two H ⁺ in formula. Ca(OH) ₂ has two OH ⁻ in formula \therefore final pH=7
			In a sodium nitrate solution is neutral (no weak acids or alkalis in salt)
26		ΛΔ	B barium sulphate solution is insoluble and does not change the pH
36	υ	46	EC potassium ethanoate solution is alkaline (weak acid in the salt)
			☑D ammonium chloride solution is acidic (weak alkali in the salt)

			$\begin{array}{ccc} & & 2I^- \rightarrow I_2 + 2e^- \\ & & MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O \end{array}$
37	7	58	$0 \times 5 \qquad 10I^- \rightarrow 5I_2 + 10e^-$
57	D	50	
			add $2MnO_4^- + 16H^+ + 10I^- \rightarrow 2Mn^{2+} + 8H_2O + 5I_2$
			2mol 10mol 1mol 5mol
			Oxidising Agents are chemicals which oxidise something else and are reduced themselves
20	٨	57	$\square A H^+$ ions are reduced into H ₂ gas (2H ⁺ + 2e ⁻ \rightarrow H ₂) and Mg is oxidised into Mg ²⁺
38	A	5/	■B H ⁺ ions are neutralised and not taking part in a redox reaction ■C H ⁺ ions are neutralised and not taking part in a redox reaction
			E D H ⁺ ions join up with ethanoate ions CH_3COO^- to form CH_3COOH molecules
39	$\boldsymbol{\mathcal{C}}$	92	$^{227}_{90}$ Th $\rightarrow {}^{223}_{88}$ Ra $\rightarrow {}^{219}_{86}$ Rn $\rightarrow {}^{215}_{84}$ Po $\rightarrow {}^{211}_{82}$ Pb
57	5	76	4 alpha particles removed
			Fraction Time (years)
40	C	83	
		05	0.25 42
			0.125 63

2	008 Highe	r Chemistry Marking Scheme				
Long Qu	Answer	Reasoning				
1	Molecular covalent Covalent network	 Both carbon dioxide and silicon dioxide are covalent substances containing only non-metals. Compounds containing only non-metals are covelent and do not conduct in any state. CO₂ is a gas at room temperature indicating it has discrete covalent molecules SiO₂ is a solid with a really high melting point indicating it is a covalent network. 				
2a	Esters	Each fat/oil molecule has three ester bonds between the alcohol glycerol and the three fatty acids				
2b	Hydrogen added across C=C double bond	Oils have C=C double bonds which makes the carbon chain bent and this keeps the molecules far enough apart to ensure the oil is a liquid at room temperature. When hydrogen is added across the C=C double bond, the molecule straightens, which means they fit together more closely and makes the fat a solid at room temperature				
2c	Oils provide energy	Oils are more healthy for you in your diet as they lower cholesterol etc.				
За	Volume of KI and volume of H ₂ O always adds up to 25cm ³	Volume of KI (cm ³) 25 20 15 10 5 Volume of KI (cm ³) 25 20 15 10 5 Volume of KI (cm ³) 25 <th 2"2"2"2"2"2"2"2"2"2"2"2"2"2"2"2"2"2<="" colspan="2" th=""></th>				
3b	23.3	Rate = $\frac{1}{\text{time}}$ \therefore time = $\frac{1}{\text{rate}}$ = $\frac{1}{0.043}$ = 23.3s				
4a	Synthesis gas	Synthesis gas is a mixture of carbon monoxide and hydrogen. It is made by:Steam reforming of methaneStem reforming of coal $CH_4 + H_2O \rightarrow CO + 3H_2$ $C + H_2O \rightarrow CO + H_2$				
4b	$CH_{3}CH(CH_{3})CHO \text{ or}$ $CH_{3} - C - C$ H H	2-methylpropanal methyl-CH3 group on C2 3 carbons on main chain with single bonds group on C1				
4c(i)	Silver mirror produced	Oxidising agentStart ColourEnd ColourAcidified DichromateOrangeGreenBenedict's/Fehling'sBlueBrick Red (orange)Hot copper (II) oxideBlackBrownTollen's Reagent(Colourless)Silver mirror produced				
4 c(ii)	In a hot water bath	As reactants are flammable a naked flame e.g. Bunsen burner must not be used for safety reasons				
4d	Primary	Oxidation of alcohols Primary Alcohol Aldehyde Carboxylic Acid Secondary Alcohol Ketone X (No oxidation) Tertiary Alcohol X (No oxidation)				
5α	Beta Particle or β	$^{99}_{42}$ Mo $\rightarrow ^{99}_{43}$ Tc + $^{0}_{-1}$ e				
5b(i)	Curve with points:	Time (hours) 0 6 12 18 24 Mass (g) 0.5 0.25 0.125 0.06 0.003				
5b(ii)	Short half-life	The half life of isotope is short enough that it does last in the body for very long.				
6a(i)	Benzene does not decolourise bromine	Benzene does not decolourise bromine solution rapidly as benzene has no C=C double bonds				
6a(ii)	Ring of 6 carbons with 6 delocalised electrons	Benzene is a flat planar molecule with six carbons in a ring with a bond angle of 120°C and equal bond lengths. Each carbon has one unbonded electron which ends up in a delocalised ring of electrons.				

6b	Reforming	Reforming is a reaction which rearranges make the hydrocarbons in petrol less like $C_6H_{14} \rightarrow C_6H_6 + 3H_2 C_8H_1$		
		$\begin{array}{ccc} & & & & & \\ & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ &$	Straight chain \rightarrow branched chain	
6c	Prevents/reduces	Ring hydrocarbons are added to petra apart to prevent auto-ignition before		
	auto-ignition	Chlorofluorocarbons (CFCs) react wit	1 1 3	
7a	Depletion of ozone layer	Ozone layer absorbs harmful UV radi skin cancer.		
7b	615	CaF ₂ + H ₂ SO ₄ - ^{1mol} 12.82mol	$= \frac{1000g}{78} = 12.82 \text{mol}$ $\rightarrow CaSO_4 + 2HF$ 2mol 25.64mol $z = 25.64 \text{litres } \times 24 \text{litres mol}^1 = 615 \text{ litres}$	
8a	2B ₂ O ₃ + 7C ↓ B ₄ C + 6CO	2B ₂ O ₃ + 7C	\rightarrow B ₄ C + 6CO	
	·	×	У	
		Working method of CO2 production	Working method to remove unreacted carbon dioxide	
8b	Diagrams showing:	hydrochloric acid	sodium hydroxide	
		e.g. flask with hydrochloric acid and calcium carbonate	e.g. bubbling gases through sodium hydroxide solution	
8c	Incomplete combustion of fuel	Combustion carbon monoxide is formed inst	innot form carbon dioxide during combustion and ead s that all the carbon atoms in a fuel burn to form	
		Combustion carbon dioxide		
9a	Answer to include:	1 st Mark: Hydrogen molecules have weak London dispersion forces between then 2 nd Mark: London dispersion forces are causes by a temporary dipole in an atom caused by the majority of electrons being temporarily found on one side of an a causing a temporary dipole to be formed.		
9b(i)	To saturate the carbon rods with gas	The surface of carbon rods trap gases during the first couple of minutes of gas production and so pausing for a couple of minutes will prevent the error in the volume of gas collected.		
		Q = I x t = 0.3 x (10x60) = 180C		
9b(ii)	0.00187	$\begin{array}{c} 2H^{+} + 2e^{-} \longrightarrow H_{2} \\ 2mol & 1mol \\ 2\times965OOC & 2g \\ 193000C & 2g \\ 180C & 2g \times \frac{180}{193000} \\ = 0.00187q \end{array}$		
9c	10 ⁻¹³	$[OH^{-}] = \frac{10^{-14}}{[H^{+}]} = -\frac{10^{-14}}{10^{-14}}$	$\frac{10^{-14}}{\times 10^{-1}} = 1 \times 10^{-13} \text{ mol } l^{-1}$	

40	Arrow pointing to	At equilibrium, the concentrations of reactants and products are equal.			
10a	level point of graph	his is indicated on the graph by levelling off horizontally			
	Same number of	he equation has 1 mole of gas on both the reactant side and the product side of			
10b	moles of gas on	the equation. Changing the pressure in this reaction has no effect on the equilibrium as neither the forward nor reverse reaction can change the pressure of			
	either side of arrow				
10c	Graph showing propene and cyclopropane reaching same final concentrations as part a	The final concentrations of products and reactants at equilibrium is the same regardless of the starting concentrations of reactants/products.			
11a	Answer to include:	Alkalis contain the OH ⁻ hydroxide ion. Alcohols contain the -OH hydroxyl functional group but alcohols do not form OH ⁻ ions in water \therefore alcohols are neutral			
11b	Answer to include:	Iodine reacts with starch and turns blue/black. Potassium iodide contains iodide I ⁻ ions not iodine. Iodide ions do not react with starch.			
12a	Enzymes have a specific shape to fit reactant only	Enzymes are globular proteins which have a specific shape which fits a			
		$ \begin{array}{cccc} \bullet & & & \\ \bullet & & & \\ \bullet & & \\$			
	-202.6	$4 \qquad \qquad H_2O(g) \rightarrow H_2O(l) \qquad \qquad \Delta H= -43.8 \text{ kJ}$			
12b		$ C_{6}H_{4}(OH)_{2(aq)} \rightarrow C_{6}H_{4}O_{2(aq)} + H_{2(g)} \qquad \Delta H = +177.4 \text{ kJ} $			
		$ 2x-1 \qquad \qquad H_2O_{2(aq)} \rightarrow H_{2(g)} + O_{2(g)} \qquad \qquad \Delta H = +191.2 \text{ kJ} $			
		add $C_{6}H_{4}(OH)_{2(aq)} + H_{2}O_{2(aq)} \rightarrow C_{6}H_{4}O_{2(aq)} + 2H_{2}O(I)$ $\Delta H= -202.6 \text{ kJ}$			
13a	Hydroxyl	The -OH group is the hydroxyl group. It is the functional group of alcohols			
13b(ii)	Biopol	Polymerbiopolpoly(ethenol)poly(ethyne)kevlarPropertyBiodegradableSolubleConductorVery strong			
13b(ii)	The reactants are turned into products. When the products are all used up for its purpose, fresh products are made	A batch process is for smaller quantities of products e.g. medicines. The process is cheaper because huge quantities are not required. A continuous process is for large quantities of chemicals e.g. fertilisers. The process is expensive to set up but is cheaper in the long run due to			
13b(iii)	Diagram showing:	the larger quantities. H H O H-C-C-C-O H H O-C-C-C-H O H H			

		Type of Catalyst	Definition	
14a	homogeneous	Homogeneous	Catalyst in same state as reactants	
	5	Heterogeneous	Catalyst in different state from reactants	
14b(i)	No effect		nical reaction by lowering the activation energy	
1-10(1)			e enthalpy change of a reaction.	
			x concentration = 0.05 litres x 0.88 mol l ⁻¹ = 0.044 mol	
11.	150	$\Delta H = cm\Delta T = 4.18 \times 0.1 \times 10^{-1}$		
14b(ii)	-152	$\begin{array}{rcl} 0.044 \text{mol} \ \text{H}_2\text{O}_2 & \leftrightarrow & 6.69 \\ 1 \text{mol} \ \text{H}_2\text{O}_2 & \leftrightarrow & 6.69 \end{array}$		
		$1 \text{mol } H_2O_2 \leftrightarrow 6.69$ $= -153$	/KJ × ^/0.044 2KJ mol ⁻¹ (exothermic reaction ∴ negative sign)	
15a(i)	Н Н HO-C—C-ОН Н Н			
	Sodium chloride will	Salt increases the net	5 1	
15a(ii)		complete the circuit bett	f corrosion as it is an electrolyte and helps to er	
	cause rusting		rmula Gram Formula Mass	
15b	Butane	Ethane-1,2-diol C2	H_6O_2 (2x12) + (6x1) + (2x16) = 24 + 6 + 32 = 62g	
		Butane Ca	$H_{10} \qquad (4\times12) + (10\times1) = 48 + 10 = 58g$	
			$\begin{array}{cccc} H & CH_3H & CH_3 \\ I & I & I & I \end{array}$	
16a	Diagram showing:			
			НОНН	
16b	methanal	Methanal lacks the -CH ₃ condensation reaction car	group attached to the CHO group so the aldol	
	Water not produced in		s water (or another small molecule) is removed	
16c	•		rogether to make a bigger molecule.	
		Redox: 5(COO	$H)_2 + 6H^+ + 2MnO_4^- \rightarrow 2Mn^{2+} + 10CO_2 + 8H_2O$	
	MnO4 ⁻ + 8H⁺ + 5e ⁻		$2MnO_4^- \rightarrow 2Mn^{2+}$	
17a		Reduction: 21	$MnO_4^{-} + 16\mathrm{H}^{+} + 10\mathrm{e}^{-} \rightarrow 2\mathrm{Mn}^{2+} + 8\mathrm{H}_2\mathrm{O}$	
- ~ ~	Mn ²⁺ + 4H₂O	NN	$\frac{\text{AnO}_{4} + 8\text{H}^{+} + 5\text{e}^{-} \rightarrow \text{Mn}^{2+} + 4\text{H}_{2}\text{O}}{5(00011)} = 1000 \pm 10011 \pm 10000$	
	M(II + +F12O	Oxidation:	$\begin{array}{rcl} 5(COOH)_2 & \rightarrow & 10CO_2 + 10H^{+} + 10e^{-} \\ (COOH)_2 & \rightarrow & 2CO_2 + 2H^{+} + 2e^{-} \end{array}$	
	Colour changes from	[
1	COTOUL CHUNGES I PORT			
17h	-		If indicating as they are purple and become	
17b	colourless to purple		lf indicating as they are purple and become to become manganese Mn ²⁺ ions	
17b	colourless to purple without indicator	colourless as they react t		
	colourless to purple without indicator Rough titre is	colourless as they react the second s	o become manganese Mn ²⁺ ions e rough titre and should not be used in averaging of the ough titre is only used to get a rough idea of where the colour	
17b 17c(i)	colourless to purple without indicator	colourless as they react the 1 st titre is also known as the volume from the burette. The rechange will take place and the negative states the states and the negative states and the sta	to become manganese Mn ²⁺ ions e rough titre and should not be used in averaging of the ough titre is only used to get a rough idea of where the colour ext titration can be much more accurate as a result and	
	colourless to purple without indicator Rough titre is	colourless as they react the 1 st titre is also known as the volume from the burette. The restange will take place and the neaccurate to arounf one drop from the take place by the take place and the neaccurate to arounf one drop from the take place by the take pl	to become manganese Mn ²⁺ ions e rough titre and should not be used in averaging of the ough titre is only used to get a rough idea of where the colour ext titration can be much more accurate as a result and	
	colourless to purple without indicator Rough titre is	colourless as they react the The 1 st titre is also known as the volume from the burette. The re change will take place and the ne accurate to arounf one drop from n o. of mol MnO4 ⁻ = v olume x	to become manganese Mn ²⁺ ions e rough titre and should not be used in averaging of the ough titre is only used to get a rough idea of where the colour ext titration can be much more accurate as a result and om the burette.	
	colourless to purple without indicator Rough titre is	colourless as they react the The 1 st titre is also known as the volume from the burette. The re change will take place and the ne accurate to arounf one drop from n o. of mol MnO4 ⁻ = v olume x	To become manganese Mn^{2+} ions e rough titre and should not be used in averaging of the ough titre is only used to get a rough idea of where the colour ext titration can be much more accurate as a result and om the burette. concentration = 0.0269litres × 0.040mol t ² = 0.001076mol + $2MnO_4^- \rightarrow 2Mn^{2+} + 10CO_2 + 8H_2O$ 2mol	
	colourless to purple without indicator Rough titre is	colourless as they react to The 1 st titre is also known as the volume from the burette. The re- change will take place and the re- accurate to arounf one drop from no. of mol MnO4 ⁻ = volume x 5(COOH) ₂ + 6H ⁺	To become manganese Mn^{2+} ions e rough titre and should not be used in averaging of the ough titre is only used to get a rough idea of where the colour ext titration can be much more accurate as a result and om the burette. concentration = 0.0269 litres $\times 0.040$ mol $t^{-1} = 0.001076$ mol + $2MnO_4^- \rightarrow 2Mn^{2+} + 10CO_2 + 8H_2O$	
17c(i)	colourless to purple without indicator Rough titre is inaccurate	colourless as they react to The 1 st titre is also known as the volume from the burette. The re- change will take place and the re- accurate to arounf one drop from no. of mol MnO4 ⁻ = volume x 5(COOH) ₂ + 6H ⁺ 5mol	To become manganese Mn^{2+} ions e rough titre and should not be used in averaging of the ough titre is only used to get a rough idea of where the colour ext titration can be much more accurate as a result and om the burette. concentration = 0.0269 litres $\times 0.040$ mol t ¹ = 0.001076 mol + $2MnO_4^- \rightarrow 2Mn^{2+} + 10CO_2 + 8H_2O$ 2mol 0.001076 mol	
17c(i)	colourless to purple without indicator Rough titre is inaccurate	colourless as they react to The 1 st titre is also known as the volume from the burette. The re- change will take place and the re- accurate to arounf one drop from no. of mol MnO4 ⁻ = volume x 5(COOH)2 + 6H ⁺ 5mol 0.00269mol	To become manganese Mn^{2+} ions e rough titre and should not be used in averaging of the ough titre is only used to get a rough idea of where the colour ext titration can be much more accurate as a result and om the burette. concentration = 0.0269 litres $\times 0.040$ mol $t^{-1} = 0.001076$ mol + $2MnO_4^- \rightarrow 2Mn^{2+} + 10CO_2 + 8H_2O_2$ 2mol 0.001076 mol lic acid in 25cm ³ rhubarb juice	